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ABSTRACT

The need for accurate seafloor maps is increasing along with the increase in marine 
activities, such as dredging, construction of buildings on the coast and offshore, and 
navigation of ships to prevent shipwrecks while sailing. The hydroacoustic technology used 
in this study is the multibeam echosounder system (MBES), which is the most advance 
acoustic instrument today. MBES can sweep very large areas in a short time, so that the 
survey costs can be reduced. The aim of this research was firstly to classify the seabed 
sediment in G-Island, Jakarta Bay using supervised classification technique. Secondly, to 
analyze the acoustic characteristic of the seabed sediment and compare it with the physical 
characteristic of the sediment.This research was conducted on October 31st to November 
5th 2016 in the waters of G-Island, Jakarta Bay. In this study, supervised classification 
techniques were applied. The supervised classification techniques used in this research 

was Support Vector Machine (SVM). SVM 
produces classifications with 5 main classes, 
namely clay, fine silt, medium silt, coarse 
silt and fine sand. The overall accuracy 
value of the SVM method was 80.25% 
with the Kappa coefficient value of 0.2031 
which is categorized into the fair class in its 
classification.
Keywords: Jakarta Bay, multibeam echosounder, 

supervised classification, support vector machine
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INTRODUCTION

The seabed is a habitat for various types of marine life, either fish or other benthic miofauna 
(Parnum et al., 2004). On the seafloor there are also various chemical, physical and 
biological processes, such as sediment transport and biological pump mechanics. Behind 
the benefits of the seabed, research on the seabed is more complex than the application of 
other hydroacoustic technologies (Lurton, 2002). Various problems such as rough surface 
of the seabed, absorption in sediments is greater than in the water column, and the presence 
of scatterers of other acoustic signals on the surface and in the sediments makes the study 
of the seabed becomes more difficult, but also more interesting to do.

One of the hydroacoustic technologies instrument that always used for seabed research 
is multibeam echosounder. Multibeam echosounder (MBES) is an acoustic equipment 
that is intensively used in water-based mapping, mainly because this technology has 
more capabilities, especially its broad coverage and high resolution for bathymetry data 
acquisition (Anderson et al., 2008) when compared with equipment such as singlebeam 
echosounder, side scan sonar or Light Detection And Ranging (LiDAR). Seabed mapping 
becomes very important because it provides detailed and accurate information about 
the topography of the seafloor. This information is very much needed in various aquatic 
applications such as making navigation maps to ensure the safety of ship traffic and 
searching for sinking vessels.

The MBES technology is an extension of the singlebeam echosounder (SBES) 
technology which only transmits one beam vertically to the bottom of the water, while the 
multibeam is able to transmit hundreds of beams to the bottom and its beam pattern widens 
and transversely to the hull (Lurton, 2010). Each beam that is emitted will get a point of 
depth so that if the depth points are connected it will form a topographic profile. There are 
two types of datasets produced by multibeam echosounder, bathymetry and backscatter data.

Information about the seabed can be used extensively, both by oceanographers to study 
habitat for benthic animals (Friedlaner & Perrish, 1998), as well as by industry players, 
even the military (Sternlicht & Moustier, 2003). Along with the increasing exploitation 
of marine resources, effective management of the marine environment is very important 
to note. Therefore, information about accurate seabed is needed to answer this challenge. 
Information about the bottom of the water can be obtained using MBES.

Various methods of seabed classification using MBES data to obtain benthic habitat 
information have been developed in the last two decades (Fonseca & Mayer, 2007). 
Generally there are three types of MBES data sets that are used as input in the classification 
process: backscatter mosaics, backscatter angular responses, and bathymetry (Manik, 2011). 
Backscatter is the key on determining sea surface conditions (Huang et al., 2013). The 
backscatter intensity obtained from the receiver provides preliminary information on the 
type of sediment at a spatially observed location (Huang et al., 2014; Fonseca et al., 2009).
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The aim of this research was firstly to classify the seabed sediment in G-Island, Jakarta 
Bay using supervised classification technique. The supervised classification technique used 
in this research was Support Vector Machine (SVM) that is based on machine learning. 
Secondly, to analyze the acoustic characteristic of the seabed sediment and compare it with 
the physical characteristic of the sediment.

METHODS

Acoustic Data Acquisition

This research began with the data acquisition stage using the MBES acoustic instrument 
in the waters of Jakarta Bay. Data that can be obtained from the MBES instrument are 
bathymetry data and backscatter data (Marsh & Brown, 2009). Data acquisition was 
conducted on October 31st to November 5th 2016. Bathymetry data became the base map 
in the making of the Jakarta Bay seabed sediment classification map, while backscatter 
data were analyzed for further comparison with the sediment sample data and the output 
results are classification of Jakarta Bay sediments.

The survey was done using a public vessel with dimensions of 12 x 2.5 metres. 
Technical specifications of the survey was explained as the distance between the lanes 
ranges from +100 metres with the number of main survey lines used for this research is 

Figure 1. Location of survey area in the waters of G-Island, Jakarta Bay
The red line shows the data acquisition lane using the MBES instrument.
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30 lanes of main and 3 lanes of cross. Figure 1 shows the map of the survey location in 
Jakarta Bay.

The MBES instrument used to obtain bathymetry and backscatter data was SIMRAD 
Kongsberg EM 2040 with the output frequency of 300 kHz. The frequency of 300 kHz 
can be used in shallow waters and waters with medium depth (<450 m). The MBES data 
obtained were data that had been corrected for vessel movement, bow aberration, and GPS 
delay correction using the Teledyne TSS DMS-05 motion sensor which has an accuracy of 
slant and bobbing of 0.05°. Determination of the positioning position used Veripos DGPS 
which had a horizontal accuracy of 0.13 metres and a vertical accuracy of 0.32 metres at a 
95% confidence level. The assistance software used as a navigation guide was Automatic 
Data Logging (ADL) Hydro-Pro, and software for data acquisition using the Seafloor 
Information System (SIS).

Seabed Sediment Sample Data Acquisition

In addition to the MBES data, sediment samples were taken as validation material for the 
classification of sediments based on the geoacoustic properties of the sediments. Sediment 
samples were taken as many as 7 samples that were randomly distributed in the survey 
area. Sediment samples were taken using a grab sampler. Sediment samples taken are 
sediment samples on the bottom surface of the water only because of the limitations of 
the grab sampler to penetrate the sediment layer. Sediment samples obtained, placed in 
plastic samples and then analyzed the grain size in the laboratory. 

In addition to sediment sample data, secondary data to determine sediment types in 
Jakarta Bay waters were also obtained from the Hydrography and Oceanography Center, 
Indonesia Navy based on 2016 data. This secondary data was juxtaposed with primary 
sediment sample data to add validation to the MBES data obtained. The type of ground truth 
sediments obtained through the 2016 Hydrography and Oceanography Center, Indonesia 
Navy data show that the Jakarta Bay waters are dominated by clay (Table 1).

Table 1 
Number of points and sediment types in Jakarta Bay 

No. Sediment type Number of points
1 Clay 3276
2 Clayey sand 14
3 Coarse silt 62
4 Fine silt 25
5 Medium silt 16
6 Sandy clay 15
7 Sandy mud 10
8 Sandy silt 89
9 Silty clay 13
10 Very fine sand 1
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Data processing analysis of sediment samples was carried out using the wet sieve 
method using a multilevel sieve to separate the size of the sediment grains based on the 
grain size fraction. The fractions are determined based on Shephard’s triangle (Shepard, 
1954) where each fraction was divided into: 

1.	 Gravel (gravel) fraction: a combination of rock and gravel material
2.	 Sand fraction (sand): a combination of fine sand to coarse sand material
3. 	Mud fraction: a combination of clay and silt material

Bathymetry Data Quality

The bathymetry data obtained by MBES must be in accordance with standards set by the 
International Hydrographic Organization (IHO). Therefore, quality control (QC) is needed 
in the form of bathymetry data correction. The accuracy requirements for bathymetry 
measurements were set into 4 levels (order) based on the S-44 IHO (2008).

Table 2 
List of minimum standards for bathymetry surveys

Order Special 1a 1b 2
Area Areas where 

under-keel 
clearance is 
critical

Areas shallower than 
100 metres where 
under-keel clearance is 
less critical but features 
of concern to surface 
shipping may exist

Areas shallower than 100 
metres where under-keel 
clearance is not considered 
to be an issue for the type of 
surface shipping expected 
to transit the area

Areas generally 
deeper than 100 
metres where a 
general description 
of the seafloor is 
considered adequate

Horizontal 
accuracy 2 m 5 m + 5% depth 20 m + 5% depth 150 m + 5% depth

Depth 
accuracy

a = 0.25 m
b = 0.0075

a = 0.5 m
b = 0.013

a = 1.0 m
b = 0.023 same with order 2

This correction is related to the level of accuracy of the data in providing information 
about the actual depth value in the observed area, and to determine the quality of the data 
to be classified into the hydrographic order. This correction was done by comparing the 
value of depth at the point of intersection (cross check) between the transverse lane and 
the longitudinal lane, so that the deviation of depth will be obtained. The error limit at 
each point of correction of water depth must not exceed the fault tolerance limit set by 
IHO (2008). All uncertainties in calculating the vertical uncertainty should be combined 
statistically to obtain a total vertical uncertainty (TVU). The maximum allowable TVU 
for specific depth is presented in Equation [1].

𝜎 = ± 𝑎2 − 𝑏 𝑥 𝑑 2 				    [1]
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where:
𝜎		  : maximum allowable TVU for a specific depth (m)
a		  : represent the depth error constant (m)
b		  : a coefficient which represents a replacement factor for depth error
d		  : depth (m)
b x d		  : represents that portion of uncertainty that varies with depth

Support Vector Machine Classification

Classification technique that was used in this study was supervised classification which was 
the machine learning (computer based) technique. The machine learning which was now 
being developed and applied was Support Vector Machine (SVM). This method is rooted 
in statistical learning theory and works very well on high dimensional data sets. In SVM, 
a selected amount of data will contribute to form the model used in the classification to 
be studied. In addition, SVM only stores a small portion of the training data to be used at 
the time of prediction. The data that contribute is called the support vector, therefore the 
method is called SVM (Prasetyo, 2014).

The basic idea of ​​SVM is to maximize hyperplane (decision boundary). Hyperplane 
which is the best separator between two classes can be found by measuring the hyperplane’s 
margin and finding its maximum point. Margin is the distance between the hyperplane 
and the closest data from each class. The closest data is referred to as a support vector. 
Hyperplane with maximum margins provides better generalization to the classification 
method.

Model and Data Correlation

Accuracy level analysis between classification models and field data was performed using 
Kappa coefficient statistical analysis. The Kappa coefficient was developed by Cohen 
(1960). The Kappa coefficient was introduced for remote sensing research in the early 
1980s (Congalton & Mead, 1983; Congalton, 1991) and had been an excellent test to be 
used to analyze the accuracy of object classification results.

In general, the Kappa coefficient can be used to measure the degree of agreement of two 
assessors in classifying objects into groups, as well as to measure alternative agreements of 
new methods with existing methods. The equation to get the Kappa coefficient is expressed 
in Equation [2]:

𝜅 =
𝑁∑ 𝑋𝑖𝑖 − ∑ 𝑋𝑖+𝑋+𝑖𝑟

𝑖=1
𝑟
𝑖=1
𝑁2 −∑ 𝑋𝑖+𝑋+𝑖𝑟

𝑖=1
			   [2]
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where
𝜅 	 : Kappa coefficient;
N 	 : number of observations;
Xii	 : observation in ith row ith column;
Xi+	: marginal total in ith row;
X+i	: marginal total in ith column.
A simpler equation is shown in Equation [3]:

𝜅 =
𝑝0− 𝑝𝑒
1−𝑝𝑒

					     [3]

where

𝑝0 = 
∑𝑋𝑖𝑖
𝑁

= accuracy of the agreement observed,

𝑝𝑒 = 
∑𝑋𝑖+𝑋+𝑖

𝑁2
= estimation of chance of agreement.

Class results from the Kappa coefficient value classification are divided into 5 classes; 
poor, fair, moderate, good, and very good (Altman, 1991). Kappa coefficient value 
distribution classes can be interpreted as in Table 3.

Table 3 
Classification of the level of agreement between the Kappa coefficient values

𝜅 VALUE  (STRENGTH OF AGREEMENT)
< 0.20
0.21 – 0.40
0.41 – 0.60
0.61 – 0.80
0.81 – 1.00

POOR
FAIR
MODERATE
GOOD
VERY GOOD

RESULTS AND DISCUSSION

Seabed Topography

Acquisition of sound velocity data at the study site using the AMD Oceanography CTD 
instrument which was carried out every day before the rating survey was conducted. The 
value of sound velocity (sound velocity profile, SVP) varied every day. Figure 2 shows 
the daily sound speed profile for 5 days from November 1st to 5th. 

The results of SVP measurements at the study site ranged from 1542.5 ms-1 to 1544.5 
ms-1 with a maximum depth of 12 m. This sound speed value would be a correction factor 
for the acoustic waves that were transmitted and received by the MBES instrument. Tidal 
data acquisition was carried out using the Thalimedes instrument at Pantai Mutiara dock. 
Figure 3 shows the tidal graph at the study site from October 31st to November 5th, 2016.
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The tidal graph at the study site shows the lowest tidal value is 19.75 cm and the highest 
tide is 102.96 cm on November 2nd, 2016. Tidal type at the study site is included in the 
type of daily tidal (diurnal). These results are in accordance with research conducted by 
Indriani et al. (2010) which showed that the type of tides in the waters of Jakarta Bay was a 
single daily tide. Tidal correction is needed in the processing of bathymetry data generated 
by MBES to get the true depth value. Tidal corrections carried out in this study used the 
mean sea level (MSL) value as a benchmark. The MSL value is the middle value of the 
tidal graph, so that all bathymetry data obtained later be reduced or added to the MSL value 
obtained in this study. The MSL value was computed from tidal analysis by calculating the 
trend of the tidal graph. MSL value obtained in this study was 60 cm.

After the data was corrected by tidal values, bathymetry profiles could be generated. 
Bathymetry profiles or topographic forms of the seabed surface were obtained from MBES 

Figure 2. Sound velocity profile at the study site on November 1st to 5th, 2016

Figure 3. Tidal charts at the study site on October 31st to November 5th, 2016
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data which had been corrected by vessel motion, position, tides, and sound velocity profiles. 
The bathymetry profile at the study site is shown in Figure 4.

The bathymetry profile in the study site based on the corrected MBES data showed a 
depth value between 9.75 m to 17.10 m. The bathymetry profile obtained showed the water  
in Jakarta Bay were shallow. The shallower area is in area A, while the deepest area in the 
study area is in area B. In area B a basin is suspected to be a pipe planting area.

The level of precision and accuracy of bathymetry data in this study was maintained in 
accordance with 2008 IHO standards. According to the IHO (2008) statute, the bathymetry 
data quality control results from MBES are validated with reference surfaces as locations 
for checking data quality. The reference surface in this case was the cross depth obtained 
from cross lane data. The method used was to compare bathymetry data from MBES results 

(a)

(b)

(c)

Figure 4. Bathymetry profile in study site
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in the main lane with the cross lane (cross). This method aims to find fault tolerance limits. 
Calculation of bathymetry data quality aims to determine the value of the deviation in the 
same position at different times. Table 4 shows the position of the correction point, the 
error value and the calculation of the maximum allowable TVU.

Table 4 
Bathymetry data quality on cross lanes

Longitude Latitude MB depth Cross depth Average 
depth Difference Maximum 

allowable TVU
-6.106 106.777 6.171 6.056 6.114 0.115 0.2500
-6.097 106.798 3.729 3.840 3.785 0.111 0.2500
-6.074 106.756 9.515 9.470 9.493 0.045 0.2500
-6.076 106.777 9.784 9.654 9.719 0.130 0.2500
-6.073 106.786 8.856 8.827 8.8415 0.029 0.2500
-6.072 106.787 11.641 11.375 11.508 0.266 0.2500
-6.070 106.761 10.434 10.360 10.397 0.074 0.2500
-6.069 106.781 13.822 12.262 13.042 1.560 0.2503
-6.071 106.794 19.045 18.323 18.684 0.722 0.2501
-6.075 106.786 11.343 10.499 10.921 0.844 0.2501
-6.073 106.765 8.941 8.479 8.71 0.462 0.2500
-6.071 106.757 14.269 13.268 13.7685 1.001 0.2501

The intersection point between the main lane and the cross lane at this study site consists 
of 12 points. The maximum measured error value is 1.56 meters and the minimum measured 
error value is 0.03 meters. By using Equation [1] an error tolerance limit value (σ) of 0.25 
meters is obtained. Based on the results of manual calculations, the depth error tolerance 
limit between the main lane with the cross lane, it can be said that all the bathymetry data 
error values at the correction point are within the error tolerance limits for the measurement 
of water depths in the special order hydrographic survey classification.

Support Vector Machine Classification

The bottom sediments of G-Island waters, Jakarta Bay, had been classified using supervised 
classification techniques. The Support Vector Machine method was applied in this 
supervised classification technique. As many as 3.8 million points were extracted from 
the MBES raw data. Each point contained information about the location (latitude and 
longitude) and the value of backscatter intensity obtained from the MBES data.

Due to some software limitations in the classification process, 3.8 million points 
were reduced to approximately 40 thousand points. Reduction of the data was done by 
eliminating data with the same coordinates, so it would  not affect the accuracy results of 
the classification. Of the 40 thousand data points, 20% of the data was used as training data 
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sets, or around 8 thousand points. From these 8 thousand points, another 20% of data was 
taken for class accuracy testing and obtained 5 main classes in the classification using this 
SVM method, namely clay, coarse silt, medium silt, fine silt, and very fine sand.

The backscatter value obtained from this MBES data using the SVM method ranged 
from -56 dB to -14 dB. The distribution of the backscatter intensity distribution from the 
MBES data is shown in Figure 5.

Figure 5. Frequency distribution versus backscatter intensity of MBES data using SVM method

Figure 6. Classification of G-Island sediments using the SVM method

The distribution of the most intensity values is in the range of -43 dB to -42 dB with 
a frequency of nearly 400 thousand points. With the highest frequency distribution in 
the range of -40 dB, it can be said that sediments in G-Island waters are dominated by 
fine sediments (De Falco et al, 2010). The results of the G-Island waters sediment type 
classification are shown in Figure 6.
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From Figure 6 we can see the spatial distribution of sediment types in the G-Island 
waters. From the results obtained, it appears that the type of sediment in the G-Island waters 
is dominated by the type of clay sediment from the classification processing results using 
the SVM method. Clay sediments are marked in dark blue, fine silt sediments are marked 
in bright blue, medium silt sediments are marked in green, coarse silt sediments are marked 
in orange, and fine sand is marked in red. Figure 7 shows the overlapping results between 
the results of the classification using the SVM method with Google Earth imagery.

From the overlapping results (Figure 7), it can be seen that the type of sediment close 
to the reclamation island, G-Island, the type of sediment tends to be larger and coarser. This 
can be caused by material or sediment originating from the reclaimed island. However, the 
type of sediment that dominated in the G-Island waters was still clay. The distribution of 
clay sediment reached 90% in these waters when referring to ground truth data.

Although the SVM method has succeeded in classifying sediment types with results 
similar to ground truth data, there are still some shortcomings in this method, including the 
inability of this method to produce classes according to ground truth. There are four classes 
that have not been successfully classified by this method; sandy silt, sandy clay, sandy mud, 
silty clay, and clayey sand. Another drawback is that there are still misclassifications of 
this method, such as errors in determining class. Sediments which should be categorized 
as silt are classified as clay by this method. 

Figure 7. Overlapping between Google Earth imagery and the results of the SVM classification in the G-Island 
waters
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SVM Accuracy Test

Supervised classification techniques also need to do an accuracy test to find out how 
accurate the classification model is made and how it fits with ground truth data. The 
accuracy test used in this method is the Kappa coefficient test.

The overall accuracy value for the SVM method generated from the Kappa test is 
0.8025 with an agreement of chance value of 0.7522 at a 95% confidence interval. The 
accuracy value of 0.8025 is quite large for classification, which means 80.25% of the data 
has been successfully classified correctly by this method.

The Kappa coefficient value obtained in this study is 0.2031. This value is classified 
into fair class of the strength of agreement variable. These results are similar to studies 
conducted by Stephens and Diesing (2014) which show that the accuracy and Kappa 
coefficient values ​​of the SVM method are worth 0.78 and 0.39. Testing the accuracy of 
this method also calculates the values ​​of producers’s accuracy and user’s accuracy.

Producer’s accuracy is classification accuracy which is seen from the point of view 
of the producer. This shows how often class results are displayed spatially correctly or the 
probability of a benthic habitat in an area is classified correctly, while user’s accuracy is 
the classification accuracy seen from the point of view of the map user, not the maker. User 
accuracy indicates how often the class on the map can represent the real situation. Table 
5 shows the classes obtained from the results of the SVM classification and the values ​​of 
the producer’s and user’s accuracy of those classes.

Table 5 
The value of producer’s accuracy and user’s accuracy of the classes classified by the SVM method

Class Number of points that 
correctly classified

References 
points

Classification 
points

User's 
accuracy (%)

Producer's 
accuracy (%)

Clay 2796 3276 2839 98.49 85.35
Fine Silt 2 25 295 0.68 8.00
Medium Silt 3 15 238 1.26 20.00
Coarse Silt 23 62 143 16.08 37.10
Very Fine 
Sand 1 1 5 20.00 100.00

From Table 5 it can be explained that the value of producer’s accuracy and user’s 
accuracy will not be the same. In the case of the SVM method in this study, for example, the 
value of producer’s accuracy for the clay class is 85.35%, while the value of user’s accuracy 
is 98.49%. This shows that 85.35% of the clay class has been correctly identified as “clay”, 
and as many as 98.49% of the points identified as “clay” are the actual classifications for 
clay. As many as 1.51% of the points are misclassified into the other four classes. These 
results are of course categorized as having a large enough accuracy value. This is due to 
the dominant class in the study area is the clay class.
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In the coarse silt class, the value of the producer’s accuracy for the coarse silt class is 
37.10%, while the value of the user’s accuracy is 16.08%. This shows that 37.10% of the 
coarse silt class was correctly identified as “coarse silt”, and only 16.08% of the points 
identified as “coarse silt” were the actual classifications for coarse silt. 83.92% of the points 
are categorized incorrectly in other classes (clay, fine silt, medium silt, and fine sand).

CONCLUSIONS

The aims of this study was to test the supervised classification technique for their ability to 
predict substrate type using MBES and ground truth data. We have shown that satisfactory 
results can be obtained from using legacy data. The value of backscatter intensity obtained 
from the supervised classification techniques, is ranged from -54 dB to -14 dB using SVM 
classification. The basic sediment types of Jakarta Bay waters can be mapped into 5 main 
classes (clay, fine silt, medium silt, coarse silt, and very fine sand). The SVM method 
produces an accuracy level of 80.25% with a Kappa coefficient of 0.2031. 
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